Your History

Menu

Stochastic Discrete-Time Update Operator

Prerequisites

Markov Property | \(p\left( \mathbf{X}_{n+1} = \mathbf{x}_j \,\vert\, \mathbf{X}_{n} = \mathbf{x}_i, ... , \mathbf{X}_{1} = \mathbf{x}_1 \right) = p\left( \mathbf{X}_{n+1} = \mathbf{x}_j \,\vert\, \mathbf{X}_{n} = \mathbf{x}_i \right)\)
Markov Transition Matrix Entries | \(\left[ T \right]_{i,j} = p\left( \mathbf{X}_{n+1} = \mathbf{x}_{j} \,\vert\, \mathbf{X}_{n} = \mathbf{x}_{i} \right)\)

Description

In the case of a stochastic discrete-time system obeying the Markov property, a Markov transition matrix can be used as the update operator.

\[p\left( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}+1} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000011}{j}} \,\vert\, \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000018}{i}} \right) = \htmlClass{sdt-0000000027}{T}(\htmlClass{sdt-0000000018}{i}, \htmlClass{sdt-0000000011}{j})\]

Symbols Used:

This symbol represents a random variable. It is a measurable function that maps a sample space of possible outcomes to a a measurable space.

\( j \)

This is a secondary symbol for an iterator, a variable that changes value to refer to a series of elements

\( i \)

This is the symbol for an iterator, a variable that changes value to refer to a sequence of elements.

\( T \)

This is the symbol for a dynamical system's update operator.

\( \mathbf{x} \)

This symbol represents a state of the dynamical system at some time point.

\( n \)

This symbol represents any given whole number, \( n \in \htmlClass{sdt-0000000014}{\mathbb{W}}\).

Derivation

  1. Consider a stochastic system with discrete time and a finite number of \( \vert \htmlClass{sdt-0000000038}{\mathcal{X}} \vert = n \) possible states:
    \[ \htmlClass{sdt-0000000038}{\mathcal{X}} = \{ \htmlClass{sdt-0000000046}{\mathbf{x}}_1, \htmlClass{sdt-0000000046}{\mathbf{x}}_2, ..., \htmlClass{sdt-0000000046}{\mathbf{x}}_n \} \]
  2. Assume the system obeys the Markov property:
    \[p\left( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}+1} = \htmlClass{sdt-0000000046}{\mathbf{x}}_j \,\vert\, \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}} = \htmlClass{sdt-0000000046}{\mathbf{x}}_i, ... , \mathbf{\htmlClass{sdt-0000000005}{X}}_{1} = \htmlClass{sdt-0000000046}{\mathbf{x}}_1 \right) = p\left( \mathbf{X}_{\htmlClass{sdt-0000000117}{n}+1} = \htmlClass{sdt-0000000046}{\mathbf{x}}_j \,\vert\, \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}} = \htmlClass{sdt-0000000046}{\mathbf{x}}_i \right)\]
  3. The transition from the current state \( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000018}{i}} \) to the following state \( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}+1} \) takes place as dictated by the system's transition matrix:
    \[\left[ \htmlClass{sdt-0000000087}{T} \right]_{\htmlClass{sdt-0000000018}{i},\htmlClass{sdt-0000000011}{j}} = p\left( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}+1} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000011}{j}} \,\vert\, \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000018}{i}} \right)\]
  4. The distribution of \( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}+1} \) can be computed (and its realization through e.g. distribution sampling).
  5. Thus the transition matrix functions as an update operator with values given by:
    \[ p\left( \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}+1} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000011}{j}} \,\vert\, \mathbf{\htmlClass{sdt-0000000005}{X}}_{\htmlClass{sdt-0000000117}{n}} = \htmlClass{sdt-0000000046}{\mathbf{x}}_{\htmlClass{sdt-0000000018}{i}} \right) = \htmlClass{sdt-0000000027}{T}(\htmlClass{sdt-0000000018}{i}, \htmlClass{sdt-0000000011}{j}) \]
    as required.

References

  1. Jaeger, H. (n.d.). Neural Networks (AI) (WBAI028-05) Lecture Notes BSc program in Artificial Intelligence. Retrieved May 17, 2024, from https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf