Can be used to find the roots of a Quadratic Polynomial.
\( x \) | This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc. |
\( c \) | This is a symbol for any tertiary generic constant. It can hold any numerical value |
\( b \) | This is a symbol for any secondary generic constant. It can hold any numerical value |
\( a \) | This is a symbol for any generic constant. It can hold any numerical value |
We can now use the quadratic formula to get:
\[\htmlClass{sdt-0000000003}{x}_{1, 2} = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot (5) \cdot (-15)}}{2 \cdot 5}\]
This simplifies to:
\[\htmlClass{sdt-0000000003}{x}_{1, 2} = \frac{10 \pm \sqrt{400}}{10} = \frac{10 \pm 20}{10}\]
This means the 2 solutions are:
\[\htmlClass{sdt-0000000003}{x}_1 = \frac{30}{10} = 3, \:\:\: \text{and} \:\:\: \htmlClass{sdt-0000000003}{x}_2 = \frac{-10}{10} = -1\]