Your History

Menu

Power Rule for Integration

Prerequisites

Definition of an Indefinite Integral | \(\int f(x) \:d x = (\lim_{n \to \infty}\sum_{i = 1}^{n} f(x_{i}) \Delta x_{i}) + C\)
Power Rule for Differentiation | \(\frac{\:d}{\:d x}(a x^{k}) = k a x^{k - 1}\)

Description

This equation shows how to find the integral of a polynomial term. It is often used in conjunction with the Addition Rule for Integration to take the integral of a polynomial.

\[\htmlClass{sdt-0000000060}{\int} (\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000015}{k}}) \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{\htmlClass{sdt-0000000121}{a}}{\htmlClass{sdt-0000000015}{k} + 1}\htmlClass{sdt-0000000003}{x}^ {\htmlClass{sdt-0000000015}{k} + 1} + \htmlClass{sdt-0000000070}{C}\]

Symbols Used:

This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc.

\( k \)

This symbol represents any given integer, \( k \in \htmlClass{sdt-0000000122}{\mathbb{Z}}\).

\( \int \)

This is the symbol for an integral, sometimes referred to as an antiderivative. Graphically, it can be understood as the area between a curve and the axis the integral is taken with respect to.

\( C \)

This symbol represents the constant of integration. It must be added to the result of all definite integrals to encompass all possible solutions that satisfy the integral.

\( \:d \)

This is the symbol for a differential. It represents an infinitesimally small (infinitely close to zero) change in whatever variable it is with respect to.

\( a \)

This is a symbol for any generic constant. It can hold any numerical value

Derivation

Consider the power rule for differentiation:

\[\frac{\htmlClass{sdt-0000000102}{\:d}}{\htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}}(\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000015}{k}}) = \htmlClass{sdt-0000000015}{k} \htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000015}{k} - 1}\]

Also consider the definition of an indefinite integral:

\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000096}{f}(\htmlClass{sdt-0000000003}{x}) \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = (\htmlClass{sdt-0000000101}{\lim}_{\htmlClass{sdt-0000000104}{n} \to \htmlClass{sdt-0000000108}{\infty}}\htmlClass{sdt-0000000080}{\sum}_{\htmlClass{sdt-0000000018}{i} = 1}^{\htmlClass{sdt-0000000104}{n}} \htmlClass{sdt-0000000096}{f}(\htmlClass{sdt-0000000003}{x}_{\htmlClass{sdt-0000000018}{i}}) \htmlClass{sdt-0000000105}{\Delta} \htmlClass{sdt-0000000003}{x}_{\htmlClass{sdt-0000000018}{i}}) + \htmlClass{sdt-0000000070}{C}\]

More coming soon...

Example

Consider \(\htmlClass{sdt-0000000096}{f}(\htmlClass{sdt-0000000003}{x}) = 4 \htmlClass{sdt-0000000003}{x}\), what is \(\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000096}{f}(\htmlClass{sdt-0000000003}{x}) \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}\)?

Values:

\(\htmlClass{sdt-0000000121}{a} = 4\)

\(\htmlClass{sdt-0000000015}{k} = 1\)

We can now plug these values in to arrive at our:

Solution

\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000096}{f}(\htmlClass{sdt-0000000003}{x}) \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{4}{1 + 1}\htmlClass{sdt-0000000003}{x}^{1 + 1} = 2\htmlClass{sdt-0000000003}{x}^2 \]