Your History

Menu

Integral of exp(x)

Prerequisites

Derivative of exp(x) | \((e^{x})' = e^{x}\)
Integral of a Derivative | \(\int f'(x) \:d x = f(x) + C\)

Description

This equation shows that the integral of \(\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}}\) is itself plus some constant (vertical translation)

\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} + \htmlClass{sdt-0000000070}{C}\]

Symbols Used:

This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc.

\( e \)

This symbol represents Euler's constant. It is approximately \(2.718\).

\( \int \)

This is the symbol for an integral, sometimes referred to as an antiderivative. Graphically, it can be understood as the area between a curve and the axis the integral is taken with respect to.

\( C \)

This symbol represents the constant of integration. It must be added to the result of all definite integrals to encompass all possible solutions that satisfy the integral.

\( \:d \)

This is the symbol for a differential. It represents an infinitesimally small (infinitely close to zero) change in whatever variable it is with respect to.

Derivation

Consider the Derivative of \(\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}}\):

\[(\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}})\htmlClass{sdt-0000000025}{'} = \htmlClass{sdt-0000000035}{e}^{x}\]

We can now integrate both sides to get:

\[ \htmlClass{sdt-0000000060}{\int} (\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}})\htmlClass{sdt-0000000025}{'} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} + \htmlClass{sdt-0000000070}{C} = \htmlClass{sdt-0000000060}{\int}(\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}}) \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} \]

Now also consider the integral of a derivative:

\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000065}{f'(x)} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \htmlClass{sdt-0000000096}{f}(\htmlClass{sdt-0000000003}{x}) + \htmlClass{sdt-0000000070}{C}\]

From here we can simplify the left hand side of our second equation to get:

\[ \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} + \htmlClass{sdt-0000000070}{C} = \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} \]

By swapping the left hand side and the right hand side, we finally get:

\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} + \htmlClass{sdt-0000000070}{C} \]

as required.

Example

Coming soon...