Your History

Menu

Integral of exp(ax) wrt x

Prerequisites

Power Rule for Differentiation | \(\frac{\:d}{\:d x}(a x^{k}) = k a x^{k - 1}\)
Integral of exp(x) | \(\int e^{x} \:d x = e^{x} + C\)

Description

\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} + \htmlClass{sdt-0000000070}{C}, \htmlClass{sdt-0000000121}{a} \neq 0\]

Symbols Used:

This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc.

\( e \)

This symbol represents Euler's constant. It is approximately \(2.718\).

\( \int \)

This is the symbol for an integral, sometimes referred to as an antiderivative. Graphically, it can be understood as the area between a curve and the axis the integral is taken with respect to.

\( C \)

This symbol represents the constant of integration. It must be added to the result of all definite integrals to encompass all possible solutions that satisfy the integral.

\( \:d \)

This is the symbol for a differential. It represents an infinitesimally small (infinitely close to zero) change in whatever variable it is with respect to.

\( a \)

This is a symbol for any generic constant. It can hold any numerical value

Derivation

This uses integration by u substitution (no page for this yet).

We are tasked with the integration:

\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} \]

let

\[ u = \htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x} \].

we will now use the power rule:

\[\frac{\htmlClass{sdt-0000000102}{\:d}}{\htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}}(\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000015}{k}}) = \htmlClass{sdt-0000000015}{k} \htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000015}{k} - 1}\]

to take the derivative of both sides, getting:

\[ \frac{\htmlClass{sdt-0000000102}{\:d} u}{\htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}} = \htmlClass{sdt-0000000121}{a} \]

From here, it follows that:

\[ \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{1}{\htmlClass{sdt-0000000121}{a}} \htmlClass{sdt-0000000102}{\:d} u \]

We can now simplify our original integral to get:

\[ \htmlClass{sdt-0000000060}{\int} \frac{1}{\htmlClass{sdt-0000000121}{a} } \htmlClass{sdt-0000000035}{e}^{u} \htmlClass{sdt-0000000102}{\:d} u \]

Our \(\frac{1}{\htmlClass{sdt-0000000121}{a}}\) term is unrelated to \(u\), so we can take that outside our integral yielding:

\[ \frac{1}{\htmlClass{sdt-0000000121}{a}}\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{u} \htmlClass{sdt-0000000102}{\:d} u \]

We now have an integral we know the value of, \(\htmlClass{sdt-0000000035}{e}^{u} \). We can use the Integral of exp(x):

\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000003}{x}} + \htmlClass{sdt-0000000070}{C}\]

yielding:

\[ \frac{1}{\htmlClass{sdt-0000000121}{a}}(\htmlClass{sdt-0000000035}{e}^{u} + \htmlClass{sdt-0000000070}{C}) \]

We can now multiply both terms in our binomial ( \(\htmlClass{sdt-0000000035}{e}^{u} + \htmlClass{sdt-0000000070}{C}\) ) with our constant \( (\frac{1}{\htmlClass{sdt-0000000121}{a}})\) to get:

\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} + \htmlClass{sdt-0000000070}{C}, \htmlClass{sdt-0000000121}{a} \neq 0 \]

(because \(\frac{\htmlClass{sdt-0000000070}{C}}{\htmlClass{sdt-0000000121}{a}} = \htmlClass{sdt-0000000070}{C}\) as both our constants anyway, and we don't really care what the exact value is because it changes in every case)

Example

Coming soon...