This equation shows the result of the integral:
\( x \) | This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc. |
\( e \) | This symbol represents Euler's constant. It is approximately \(2.718\). |
\( \int \) | This is the symbol for an integral, sometimes referred to as an antiderivative. Graphically, it can be understood as the area between a curve and the axis the integral is taken with respect to. |
\( C \) | This symbol represents the constant of integration. It must be added to the result of all definite integrals to encompass all possible solutions that satisfy the integral. |
\( \:d \) | This is the symbol for a differential. It represents an infinitesimally small (infinitely close to zero) change in whatever variable it is with respect to. |
\( a \) | This is a symbol for any generic constant. It can hold any numerical value |
Consider our integral:
\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000003}{x} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} \]
We will use integration by parts:
\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000008}{u} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000019}{v} = \htmlClass{sdt-0000000008}{u} \htmlClass{sdt-0000000019}{v} - \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000019}{v} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000008}{u}\]
Let us take \(\htmlClass{sdt-0000000008}{u} = \htmlClass{sdt-0000000003}{x}\) and \(\htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000019}{v} = \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}\)
From here it follows that:
\(\htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000008}{u} = \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}\)
We can also integrate both sides of the equation:
\[ 1 \cdot \htmlClass{sdt-0000000102}{\:d}\htmlClass{sdt-0000000019}{v} = \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} \]
(\(\htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000019}{v}\) is multiplied by 1 to make the next step more clear)
\[ \htmlClass{sdt-0000000060}{\int} 1 \cdot \htmlClass{sdt-0000000102}{\:d}\htmlClass{sdt-0000000019}{v} = \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} \]
We can now use the power rule to simplify the left hand side. The power rule is:
\[\htmlClass{sdt-0000000060}{\int} (\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000015}{k}}) \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{\htmlClass{sdt-0000000121}{a}}{\htmlClass{sdt-0000000015}{k} + 1}\htmlClass{sdt-0000000003}{x}^ {\htmlClass{sdt-0000000015}{k} + 1} + \htmlClass{sdt-0000000070}{C}\]
This makes the left hand side just \( \htmlClass{sdt-0000000019}{v} \)
We also know the structure of the right hand side:
\[\htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} + \htmlClass{sdt-0000000070}{C}, \htmlClass{sdt-0000000121}{a} \neq 0\]
This simplifies that whole equation to:
\[ \htmlClass{sdt-0000000019}{v} = \frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} \]
We can now apply integration by parts: The equation becomes:
\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000003}{x} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = (\htmlClass{sdt-0000000003}{x} \cdot \frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}}) - \htmlClass{sdt-0000000060}{\int} (\frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x}) \]
Our right hand side now:
\[ = \frac{\htmlClass{sdt-0000000003}{x} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} - \frac{1}{\htmlClass{sdt-0000000121}{a}} \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000118}{t}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000118}{t} \]
Again, we know the value of the integral, yielding:
\[ = \frac{\htmlClass{sdt-0000000003}{x} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} - \frac{1}{\htmlClass{sdt-0000000121}{a}} (\frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}}) \]
From here it follows that the right hand side:
\[ = \frac{\htmlClass{sdt-0000000003}{x} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}} - \frac{\htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}^{2}} + \htmlClass{sdt-0000000070}{C} \]
Finally, we can simplify the fraction, to get our final result of:
\[ \htmlClass{sdt-0000000060}{\int} \htmlClass{sdt-0000000003}{x} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} \htmlClass{sdt-0000000102}{\:d} \htmlClass{sdt-0000000003}{x} = \frac{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x} - 1}{\htmlClass{sdt-0000000121}{a}^{2}} \htmlClass{sdt-0000000035}{e}^{\htmlClass{sdt-0000000121}{a} \htmlClass{sdt-0000000003}{x}} + \htmlClass{sdt-0000000070}{C} \]
as required.
Coming soon...