Your History

Menu

Gradient of the performance surface

Description

The gradient of the model's performance surface represents the derivatives of the model's performance with regard to its parameters. A positive gradient indicates the direction of the steepest uphill. A negative gradient indicates the direction of the steepest downhill. Moving the model's parameters in these two directions affects the model's performance most strongly.

\[\htmlClass{sdt-0000000093}{\nabla} \htmlClass{sdt-0000000062}{R}(\htmlClass{sdt-0000000083}{\theta})=(\frac{\delta \htmlClass{sdt-0000000062}{R}}{\delta \htmlClass{sdt-0000000083}{\theta}_1}, ..., \frac{\delta \htmlClass{sdt-0000000062}{R}}{\delta \htmlClass{sdt-0000000083}{\theta}_D})\]

Symbols Used:

This symbol represents the parameters of the model

\( \nabla \)

This symbol represents the gradient of a function.

\( R \)

This symbol denotes the risk of a model.

Derivation

Given the risk function of a model parametrized by \( \htmlClass{sdt-0000000083}{\theta} \), \( \htmlClass{sdt-0000000062}{R} \)(\( \htmlClass{sdt-0000000083}{\theta} \)), we use the definition of the gradient operator, \( \htmlClass{sdt-0000000093}{\nabla} \), to define the gradient of the risk, often called performance surface:

\[\htmlClass{sdt-0000000093}{\nabla} \htmlClass{sdt-0000000062}{R}(\htmlClass{sdt-0000000083}{\theta})=(\frac{\delta \htmlClass{sdt-0000000062}{R}}{\delta \htmlClass{sdt-0000000083}{\theta}_1}, ..., \frac{\delta \htmlClass{sdt-0000000062}{R}}{\delta \htmlClass{sdt-0000000083}{\theta}_D})\]

References

  1. Jaeger, H. (n.d.). Neural Networks (AI) (WBAI028-05) Lecture Notes BSc program in Artificial Intelligence. Retrieved April 28, 2024, from https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf