Your History

Menu

Energy Change When One Unit in Boltzmann Machine Changes

Description

This equation describes the change in energy of a Boltzmann machine when one unit \(\htmlClass{sdt-0000000091}{\mathbf{s}}_{\htmlClass{sdt-0000000018}{i}}\) changes it state from 0 to 1 while all other units \(\htmlClass{sdt-0000000091}{\mathbf{s}}_{\htmlClass{sdt-0000000011}{j}}\) keep the same activation energy.

\[- \Delta \htmlClass{sdt-0000000100}{E}_{\htmlClass{sdt-0000000018}{i}} = -\htmlClass{sdt-0000000080}{\sum}_{\htmlClass{sdt-0000000011}{j}} \htmlClass{sdt-0000000092}{w}_{\htmlClass{sdt-0000000018}{i} \htmlClass{sdt-0000000011}{j}} \htmlClass{sdt-0000000091}{\mathbf{s}}_{\htmlClass{sdt-0000000011}{j}}\]

Symbols Used:

This is a secondary symbol for an iterator, a variable that changes value to refer to a series of elements

\( i \)

This is the symbol for an iterator, a variable that changes value to refer to a sequence of elements.

\( \sum \)

This is the summation symbol in mathematics, it represents the sum of a sequence of numbers.

\( \mathbf{s} \)

This symbol represents a full description of the system taken at molecular level.

\( w \)

This symbol describes the connection strength between two units in an Boltzmann machine.

\( E \)

This symbol represents the energy.

Example

This is an example for the same Boltmann machine as in the example on the page:Energy of a Specific State in a Boltzmann Machine

Consider the a fully visible Boltzmann machine with 3 units:

And the states of the units being:

Now we compute the change in energy \(\Delta \htmlClass{sdt-0000000100}{E}\) when \(\htmlClass{sdt-0000000091}{\mathbf{s}}_{1} = 1\) changes to \(\htmlClass{sdt-0000000091}{\mathbf{s}}_{1} = -1\)

Using the formula:

\[- \Delta \htmlClass{sdt-0000000100}{E}_{\htmlClass{sdt-0000000018}{i}} = -\htmlClass{sdt-0000000080}{\sum}_{\htmlClass{sdt-0000000011}{j}} \htmlClass{sdt-0000000092}{w}_{\htmlClass{sdt-0000000018}{i} \htmlClass{sdt-0000000011}{j}} \htmlClass{sdt-0000000091}{\mathbf{s}}_{\htmlClass{sdt-0000000011}{j}}\]

We get:

\[- \Delta \htmlClass{sdt-0000000100}{E}_{\htmlClass{sdt-0000000018}{i}} = -(\htmlClass{sdt-0000000092}{w}_{12}\htmlClass{sdt-0000000091}{\mathbf{s}}_{1} + \htmlClass{sdt-0000000092}{w}_{13}\htmlClass{sdt-0000000091}{\mathbf{s}}_{3}) \]

Filling these values in the yields the following:

\[- \Delta \htmlClass{sdt-0000000100}{E}_{\htmlClass{sdt-0000000018}{i}} = -(0.5 \cdot (-1) + -(0.3) \cdot 1) = 0.8\]

So, the energy the global system changes like this \(- \Delta \htmlClass{sdt-0000000100}{E}_{\htmlClass{sdt-0000000018}{i}} = 0.8\) if \(\Delta \htmlClass{sdt-0000000100}{E}\) when \(\htmlClass{sdt-0000000091}{\mathbf{s}}_{1} = 1\) changes to \(\htmlClass{sdt-0000000091}{\mathbf{s}}_{1} = -1\)

References

  1. Jaeger, H. (n.d.). Neural Networks (AI) (WBAI028-05) Lecture Notes BSc program in Artificial Intelligence. Retrieved April 27, 2024, from https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf