Your History

Menu

Division of Exponents

Prerequisites

Definition of Exponentiation | \(x^{y} = \prod_{i = 1}^{y} x\)

Description

This equation shows how to simplify division of exponents

\[\frac{\htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000017}{y}}} = \htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000003}{x} - \htmlClass{sdt-0000000017}{y}}\]

Symbols Used:

This is a symbol for any generic constant. It can hold any numerical value

\( x \)

This is a symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc.

\( y \)

This is a secondary symbol for any generic variable. It can hold any value, whether that be an integer or a real number, or a complex number, or a matrix etc.

Derivation

We will show this to be the case intuitively by an example. For our equation:

\[\frac{\htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000017}{y}}} = \htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000003}{x} - \htmlClass{sdt-0000000017}{y}}\]

Let us say:

We can now say that we are trying to find:

\[\frac{3^5}{3^2}\]

We can now use the definition of exponentiation:

\[\htmlClass{sdt-0000000003}{x}^{\htmlClass{sdt-0000000017}{y}} = \htmlClass{sdt-0000000097}{\prod}_{\htmlClass{sdt-0000000018}{i} = 1}^{\htmlClass{sdt-0000000017}{y}} \htmlClass{sdt-0000000003}{x}\]

And expand to get:

\[\frac{3^5}{3^2} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3}\]

Now two of the \(3\) can cancel out from both the numerator and denominator:

\[\frac{3^5}{3^2} = \frac{\cancel{3} \cdot \cancel{3} \cdot 3 \cdot 3 \cdot 3}{\cancel{3} \cdot \cancel{3}} = 27\]

By looking at this, you can see that cancelling out identical effect to subtracting the exponents:

\[\frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27\]

Therefore:

\[\frac{\htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000003}{x}}}{\htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000017}{y}}} = \htmlClass{sdt-0000000121}{a}^{\htmlClass{sdt-0000000003}{x} - \htmlClass{sdt-0000000017}{y}}\]

as required.