Your History

Menu

Boltzmann Normalization Constant/Partition Function

Prerequisites

Boltzmann Distribution of Microstates | \(p(\mathbf{s}) = \frac{1}{Z} \exp\left\{ - \frac{ E(\mathbf{s}) }{ T } \right\}\)

Description

The definition of the Boltzmann distribution is given by quantities of a system's microstates which can be practically unbounded (temperature \( \htmlClass{sdt-0000000029}{T} \)) or arbitrarily defined (energy \( \htmlClass{sdt-0000000100}{E} \) with multiple possible offsets). This makes the integral over the distribution function different from 1, so a normalization constant is necessary.

\[\htmlClass{sdt-0000000077}{Z} = \htmlClass{sdt-0000000077}{Z}(\htmlClass{sdt-0000000029}{T}) = \int_{\htmlClass{sdt-0000000091}{\mathbf{s}} \in \htmlClass{sdt-0000000026}{S}} \exp\left\{ - \frac{ \htmlClass{sdt-0000000100}{E}(\htmlClass{sdt-0000000091}{\mathbf{s}}) }{ \htmlClass{sdt-0000000029}{T} } \right\} d\htmlClass{sdt-0000000091}{\mathbf{s}}\]

Symbols Used:

This symbol represents all possible microstates of a multi-particle system.

\( T \)

This symbol represents the temperature in a system.

\( Z \)

This symbol represents a normalizing factor for a function.

\( \mathbf{s} \)

This symbol represents a full description of the system taken at molecular level.

\( E \)

This symbol represents the energy.

Derivation

  1. Consider the equation for the unnormalized probability of a system being in a given microstate \( \htmlClass{sdt-0000000091}{\mathbf{s}} \) under the Boltzmann distribution :
    \[ p(\htmlClass{sdt-0000000091}{\mathbf{s}}) = \exp\left\{ - \frac{ \htmlClass{sdt-0000000100}{E}(\htmlClass{sdt-0000000091}{\mathbf{s}}) }{ \htmlClass{sdt-0000000029}{T} } \right\} \]
  2. The distribution function must integrate to 1, however this is not the case. Adding some unknown normalization factor \( \frac{1}{\htmlClass{sdt-0000000077}{Z}} \) is needed:
    \[p(\htmlClass{sdt-0000000091}{\mathbf{s}}) = \frac{1}{\htmlClass{sdt-0000000077}{Z}} \exp\left\{ - \frac{ \htmlClass{sdt-0000000100}{E}(\htmlClass{sdt-0000000091}{\mathbf{s}}) }{ \htmlClass{sdt-0000000029}{T} } \right\}\]
  3. To find the value of this normalization constant, we can use the fact that the (now normalized) probability distribution must integrate to 1. This gives:
    \[ \int_{\htmlClass{sdt-0000000091}{\mathbf{s}} \in \htmlClass{sdt-0000000026}{S}} \frac{1}{\htmlClass{sdt-0000000077}{Z}} \exp\left\{ - \frac{ \htmlClass{sdt-0000000100}{E}(\htmlClass{sdt-0000000091}{\mathbf{s}}) }{ \htmlClass{sdt-0000000029}{T} } \right\} d\htmlClass{sdt-0000000091}{\mathbf{s}} = 1 \]
  4. The constant \( \htmlClass{sdt-0000000077}{Z} \) might depend on \( \htmlClass{sdt-0000000029}{T} \), but importantly not on the state \( \htmlClass{sdt-0000000091}{\mathbf{s}} \) and implicitly neither on \( \htmlClass{sdt-0000000100}{E} \), we have:
    \[ \frac{1}{\htmlClass{sdt-0000000077}{Z}} \int_{\htmlClass{sdt-0000000091}{\mathbf{s}} \in \htmlClass{sdt-0000000026}{S}} \exp\left\{ - \frac{ \htmlClass{sdt-0000000100}{E}(\htmlClass{sdt-0000000091}{\mathbf{s}}) }{ \htmlClass{sdt-0000000029}{T} } \right\} d\htmlClass{sdt-0000000091}{\mathbf{s}} = 1 \]
  5. This results in the equality:
    \[ \int_{\htmlClass{sdt-0000000091}{\mathbf{s}} \in \htmlClass{sdt-0000000026}{S}} \exp\left\{ - \frac{ \htmlClass{sdt-0000000100}{E}(\htmlClass{sdt-0000000091}{\mathbf{s}}) }{ \htmlClass{sdt-0000000029}{T} } \right\} d\htmlClass{sdt-0000000091}{\mathbf{s}}= \htmlClass{sdt-0000000077}{Z} \]
    as required.

Equivalently, the value of \( \htmlClass{sdt-0000000077}{Z} \) can be justified directly as the result of integrating the Boltzmann distribution to some value \( \htmlClass{sdt-0000000077}{Z} \not= 1 \). Reasoning backwards from point 6 to point 2, we find each microstate's probability should be scaled by \( \frac{1}{ \htmlClass{sdt-0000000077}{Z} } \) to make the integration equal to 1.

References

  1. Jaeger, H. (n.d.). Neural Networks (AI) (WBAI028-05) Lecture Notes BSc program in Artificial Intelligence. Retrieved June 9, 2024, from https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf